General Certificate of Education (A-level) June 2012

Mathematics
MS/SS1B

(Specification 6360)

Statistics 1B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
$\begin{gathered} 1 \\ \text { (a) } \end{gathered}$	$r=\frac{S_{x y}}{\sqrt{S_{x x} \times S_{y y}}}=\frac{-0.410}{\sqrt{2.030 \times 1.498}}=\underline{\mathbf{0 . 2 3 5}}$	M1 A1	2	Correct substitution into correct formula May be implied by a correct answer AWRT (-0.235115)
(b)	Some / (very) weak / (very) little / (very)slight negative correlation/relationship/association/link	Adep1		Dependent on $\mathbf{- 0 . 2 3 5}$ or $\mathbf{- 0 . 2 4}$ OE; must qualify strength and state negative Ignore extra words unless contradict Not 'no', ‘low', ‘small', 'unlikely’ or 'trend'
	between width and thickness of lengths of steel	B1	2	Context; do not allow 'cms' or 'mms'
SC	$r=(+) 0.235 \Rightarrow$ M1 A0 Adep0 B1 max			
	Total		4	

Q	Solution	Marks	Total	Comments
$\begin{gathered} 2 \\ (\mathrm{a})(\mathrm{i}) \end{gathered}$	Mode $=\underline{23}$	B1	1	CAO
(ii)	Median ($88^{\text {th }}$ value $)=\underline{\mathbf{2 2}}$	B1		CAO
	Upper quartile $\left(132^{\text {nd }}\right.$ value $)=\underline{\mathbf{2}}$ Lower quartile ($44^{\text {th }}$ value) $=\underline{\mathbf{2 0}}$	B1		CAO; either May be implied by $\mathrm{IQR}=3$
	Interquartile range $=\underline{\mathbf{3}}$	B1	3	CAO; do not award if seen to be not based on 23 and 20
(b)	$\begin{aligned} & \text { Mean }=\underline{22.3} \\ & \text { Mean }=\underline{21 \text { to } 23} \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { (B1) } \end{gathered}$		CAO; but only award B1 if incorrect mid-points or $\Sigma f x$ seen AWFW $(\Sigma f x=3902.5)$
	$\begin{aligned} & \text { Standard deviation }=\underline{6.37} \text { or } 6.39 \\ & \text { Standard deviation }=\underline{5} \text { to } 7 \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { (B1) } \end{gathered}$	4	AWRT $\quad(s=6.391 \quad \sigma=6.372)$ AWFW $\quad\left(\Sigma f x^{2}=94132.25\right)$
SC	Only if B0 B0 or B1 B0 then award as follows but only up to a maximum total part mark of 2 1 At least 2 correct mid-points $4.5,14.5,27,32,37,44.5,54$ seen $\Rightarrow \mathrm{M} 1$ 2 Clear use of $\Sigma f x /(175$ or 174$) \Rightarrow$ M1			
(c)	$\begin{aligned} \text { Mean } & =(c \text { 's mean from }(b))+\frac{280}{175} \\ & =22.3+1.6 \end{aligned}$	M1		Adding (1.6 or equivalent) CAO to (c's mean from (b)) or to (c's new mean)
	Mean $=\underline{23.9}$	AF1	2	$\begin{aligned} & \text { F on (c's mean from (b)) or } \\ & \text { on (c's new mean) } \end{aligned}$
	Total		10	

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
$\begin{gathered} 3 \\ (\mathbf{a}) \end{gathered}$	$\begin{aligned} b \text { (gradient) } & =\underline{2.27} \\ b \text { (gradient) } & =\underline{2.2 ~ t o ~} 2.3 \\ a \text { (intercept) } & =\underline{4.16 ~ t o ~} 4.2 \\ a \text { (intercept) } & =\begin{array}{l} 3 \text { to } 7 \end{array} \end{aligned}$ Attempt at $\sum x \quad \sum x^{2} \quad \sum y \& \sum x y\left(\sum y^{2}\right)$ or Attempt at $S_{x x}$ \& $S_{x y}\left(S_{y y}\right)$ Attempt at correct formula for b (gradient) $b \text { (gradient) }=2.27$ $a \text { (intercept) }=\underline{4.16} \text { to } 4.2$	$\begin{gathered} \text { B2 } \\ \text { (B1) } \\ \text { B2 } \\ \text { (B1) } \\ \text { (M1) } \\ \text { (m1) } \\ \text { (A1) } \\ \text { (A1) } \end{gathered}$	4	AWRT (2.27075) AWFW Treat rounding of correct answers as ISW AWFW (4.16981) AWFW $480245001140 \& 57635$ (135908) (all 4 attempted) 5300 \& 12035 (27608) (both attempted) AWRT AWFW
Notes	1 Values of a and b interchanged and equation $y=a x+b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y=a+b x$ stated in (a) $\Rightarrow 0$ marks 3 Values are not identified or simply $a=\#$ and $b=\#$, then 2.2 to $2.3 \Rightarrow$ B1 and 3 to $7 \Rightarrow$ B1 but accept, for example, as identification, $[a=\#, b=\#$ with $y=a+b x$ but no substitution for $a \& b$] or [intercept $(a)=\#$, $\operatorname{gradient}(b)=\#]$ $\mathbf{4} b=\underline{\mathbf{2 4 0 7} / \mathbf{1 0 6 0}} \mathrm{CAO} \Rightarrow \mathrm{B} 2$, otherwise B1 if fraction equates to 2.2 to 2.3 (Notes $1,2 \& 3$ also apply) $a=\underline{\mathbf{2 2 1} / 53}$ CAO $\Rightarrow \mathrm{B} 2$, otherwise B1 if fraction equates to 3 to 7 (Notes $1,2 \& 3$ also apply) 5 Some/all of marks can be scored in (b), and in c(ii) \& (iii), even if some/all of marks are lost in (a) but marks lost in (a) cannot be recouped by subsequent working in (b)			
(b)	Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagram	B2 (B1)	2	Line must go from $x \leq 20$ to $x \geq 70$ and fall between the following 2 lines: Lower: $(10,25)(80,180)$ Upper: $(10,30)(80,190)$
Notes	1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated $\Rightarrow \mathrm{M} 1$ 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0			
(c)(i)	Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagram	B2 (B1)	2	Line must go from $x \leq 20$ to $x \geq 70$ and fall between the following 2 lines: Lower: $(10,60)(80,75)$ Upper: $(10,65)(80,85)$
Notes	1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated $\Rightarrow \mathrm{M} 1$ 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on			
(ii)	27 to 29	B1	1	AWFW (calculation \Rightarrow 27.75) Must clearly identify x-value Thus (27 to 29, y-value) $\Rightarrow \mathrm{B} 0$
(iii)	At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolves	B1		Either; OE (eg a comparison using lines and/or data at a specific temperature but not at $0^{\circ} \mathrm{C}$)
	Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)	B1	2	Either; OE Any comments about b or $a \Rightarrow \mathrm{~B} 0$ Comment about 'rate' must relate to temp
	Total		11	

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments	
4 (a)(i)	$\begin{aligned} & \mathrm{P}(\mathrm{~B}=3)= \\ & 194 / 640 \text { or } 97 / 320 \text { or } 0.303 \text { or } 30.3 \% \end{aligned}$	B1	1	Ratios (eg 194:640) are only penalised by 1 accuracy mark at first correct answer	
(ii)	$\begin{array}{r} P(T \geq 2)=\frac{172+256+135}{640} \text { or } 1-\frac{77}{640} \text { or } \frac{563}{640} \\ =\underline{563 / 640} \\ \underline{\text { or }(\mathbf{0 . 8 7 9} \text { to } \mathbf{0 . 8 8}) \text { or }(\mathbf{8 7 . 9 \%} \text { to } \mathbf{8 8 \%})} \end{array}$	M1 A1	2	CAO AWFW	(0.879688)
(iii)	$\begin{aligned} \mathrm{P}(\mathrm{~B}=3 \& \mathrm{~T} & \geq 2)= \\ & \frac{72+99+16}{640} \text { or } \frac{194-7}{640} \text { or } \frac{187}{640} \\ & =\underline{\mathbf{1 8 7 / 6 4 0} \text { or } \mathbf{0 . 2 9 2} \text { or } \mathbf{2 9 . 2 \%}} \end{aligned}$	M1 A1	2	CAO or AWRT	(0.292188)
(iv)	$\begin{aligned} & \mathrm{P}(\mathrm{~B} \leq 3 \mid \mathrm{T}=2)= \\ & \quad \frac{(14+67+72)}{172} \text { or } \frac{172-19}{172} \text { or } \frac{153}{172} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		Correct numerator (accept both $\div 640$) Correct denominator	
	$\begin{array}{r} =153 / 172 \\ \text { or }(0.888 \text { to } 0.89) \text { or }(88.8 \% \text { to } 89 \%) \end{array}$	A1	3	CAO AWFW	(0.889535)
(b)	$\begin{aligned} & \quad(\mathrm{a})(\mathrm{i}) \times(\mathrm{a})(\mathrm{ii}) \neq(\mathrm{a})(\mathrm{iii}) \\ & \text { since } \\ & 0.303 \times 0.88=\underline{\mathbf{0 . 2 6 5} \text { to } 0.27 \neq \mathbf{0 . 2 9 2}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Answers as fractions, lose accuracy (A \& B) Attempted AWFW \& AWRT	ges or ratios (b) \& (c)
SC	Any correct fully-explained reasoning, using other than answers from part (a), which results in an inequality (\neq) with both sides as numerically correct decimals (to 3 dp$) \Rightarrow \mathrm{B} 1(\mathrm{eg} \mathrm{P}(\mathrm{B}=3)=0.303 \neq \mathrm{P}(\mathrm{B}=3 \mid \mathrm{T}=2)=72 / 172=0.419$) but no/unclear/incomplete reasoning or no/incorrect/incomplete numerical work $\Rightarrow \mathrm{B} 0$				
(c)	$\mathrm{P}(2 \mathrm{~T} \cap 3 \mathrm{~T} \cap \geq 4 \mathrm{~T} \mid \mathrm{B}=3)=\frac{72}{194} \times \frac{99}{193} \times \frac{16}{192}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		Correct 3 values multiplied in numerator Correct 3 values multiplied in denominator $0.371 \times 0.513 \times 0.083$ (all AWRT) \Rightarrow M1 M1 (OE products)	
	$a b c$ multiplied by 6 or 3	M1		$0<(a, b \& c)<$	
	$=\underline{0.095} \text { to } 0.0952$	A1	4	AWFW	(0.095187)
Notes	1 Incorrect answer with no working $\Rightarrow 0$ marks 2 The 3 correct fractions/decimals identified but not multiplied (eg added) \Rightarrow M1 M0 M0 A0 3 The 3 correct fractions/decimals identified together with 0.016 (AWRT) \Rightarrow M1 M1 M0 A0 4 A denominator of ${ }^{194} \mathrm{C}_{3}=1198144 \Rightarrow \mathrm{M} 2\left(2^{\text {nd }} \& 3^{\text {rd }}\right.$ M1 marks $)$				
	Total		14		

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
5 (a)	Weight, $W \sim N\left(2.75,0.15^{2}\right)$			In (a)(i) \& (c), ignore the inclusion of a lower limit of 0 ; it has no effect on either answer
(i)	$\mathrm{P}(W<2.8)=\mathrm{P}\left(\mathrm{Z}<\frac{2.8-2.75}{0.15}\right)$	M1		Standardising 2.8 with 2.75 and 0.15; allow (2.75-2.8)
	$=\mathrm{P}(\mathrm{Z}<\underline{\mathbf{0 . 3 3} \text { or } \mathbf{1} / \mathbf{3}})$	A1		AWRT/CAO; ignore inequality and sign May be implied by a correct answer
	$=\underline{0.629 ~ t o ~} 0.633$	A1		AWFW (0.63056)
(ii)	$\begin{aligned} \mathrm{P}(W>2.5)=\mathrm{P}(\mathrm{Z}>-1.67) & =\mathrm{P}(\mathrm{Z}<+1.67) \\ & =\mathbf{0 . 9 5 1} \text { to } 0.953\end{aligned}$	M1		Correct area change May be implied by a correct answer or an answer > 0.5
		A1	5	AWFW (0.95221)
(b)	Weight, $X \sim \mathrm{~N}\left(5.25,0.20^{2}\right)$			
(i)	$\begin{aligned} \mathrm{P}(5.1<X<5.3) & =\mathrm{P}(Z<0.25)-\mathrm{P}(\mathrm{Z}<-0.75) \\ & =\mathbf{0 . 5 9 8 7 1} \end{aligned}$	B1		Must have diff of 2 probs for each B1 Accept 0.599
	MINUS [(1-0.77337) or 0.22663] $=0.372(08)$	B1	2	Accept 0.773 or 0.227 AG; do not mark simply on answer
(ii)	$P(0$ in 4$)=[1-0.372]^{4}$	M1		Accept [1-c's (b)(i)] ${ }^{4}$
	$=0.628^{4}=\underline{\mathbf{0 . 1 5 5} \text { to } 0.156}$	A1	2	AWFW (0.15554)
(c)	Weight, $Y \sim \mathrm{~N}\left(10.75,0.50^{2}\right)$			
	Variance of $\bar{Y}_{6}=\underline{0.5^{2} / 6=0.0416}$ to 0.0417 or Sd of $\bar{Y}_{6}=\underline{0.5 / \sqrt{6}=0.204}$	B1		CAO or AWFW Stated or used CAO or AWRT
	$\mathrm{P}\left(\bar{Y}_{6}<10.5\right)=\mathrm{P}\left(\mathrm{Z}<\frac{10.5-10.75}{\sqrt{0.041 \dot{6}}}\right)=$	M1		Standardising 10.5 with 10.75 and $\sqrt{0.0416} \mathrm{OE}$; allow (10.75-10.5)
	$\mathrm{P}(Z<-1.22)=1-\mathrm{P}(Z<1.22)=$	m1		Correct area change May be implied by a correct answer or an answer < 0.5; but do not award for use of $z= \pm 0.22$
	$1-(0.88877$ to 0.89065$)=\underline{\mathbf{0 . 1 0 9} \text { to } \mathbf{0 . 1 1 2}}$	A1	4	AWFW $(1-$ answer $) \Rightarrow B 1$ M1 max
	Total		13	

Q	Solution	Marks	Total	Comments
$\stackrel{\mathbf{6}}{(\mathbf{a})(\mathbf{i})}$	$\underline{U \sim \mathrm{~B}}(30,0.13,0.35$ or 0.20)	M1		Used correctly anywhere in (a)
	$\begin{aligned} \mathrm{P}(P=2)=\binom{30}{2}(0.13)^{2}(0.87)^{28} & \\ & =\underline{\mathbf{0 . 1 4 8} \text { to } \mathbf{0 . 1 5}} \end{aligned}$	A1 A1	3	Can be implied by a correct answer AWFW (0.1489)
(ii)	$p=\underline{0.35}$	B1		CAO
	$\mathrm{P}(R \cup P>10)=\underline{\mathbf{1}-(0.5078 \text { or } \mathbf{0 . 3 5 7 5})}$	M1		Requires ' 1 -' Accept 3 dp rounding or truncation Can be implied by 0.49 to 0.493 but not by 0.642 to 0.643
	$=\underline{0.49 ~ t o ~} 0.493$	A1	3	AWFW (0.4922)
(iii)	$\mathrm{P}(5 \leq G \leq 10)=0.9744$ or $0.9389 \quad\left(p_{1}\right)$	M1		Accept 3 dp rounding or truncation
	MINUS 0.2552 or 0.4275 (p_{2})	M1		Accept 3 dp rounding or truncation
	$=\underline{0.719}$ to $0.72\left(p_{3}\right)$	A1	3	AWFW (0.7192)
Notes	$\begin{array}{lrl} \mathbf{1} p_{3} \leq 0 \text { or } p_{3} \geq 1 & \Rightarrow \text { M0 M0 A0 } \\ \mathbf{2} & p_{2}-p_{1} & \Rightarrow \text { M0 M0 A0 } \\ \mathbf{3} & \left(1-p_{2}\right)-p_{1} & \Rightarrow \text { M0 M0 A0 } \end{array}$		4 5 6	$\begin{aligned} p_{1}-\left(1-p_{2}\right) & \Rightarrow \text { M1 M0 A0 } \\ p_{1} \times p_{2} & \Rightarrow \text { M1 M0 A0 } \\ \left.-p_{2}\right)-\left(1-p_{1}\right) & \Rightarrow \text { M1 M1 (A1) } \end{aligned}$
(b)(i)	Mean or $\mu=100 \times 0.22=\underline{\mathbf{2 2}}$ Variance or $\sigma^{2}=100 \times 0.22 \times 0.78$	B1		CAO
	$=\underline{17.1} \text { to } 17.2$	B1	2	AWFW (ignore notation) (17.16) ISW all subsequent working
(ii)	$22.1 \approx=22$ or means similar/equal or $0.221 \approx /=0.22$ or proportions similar/equal so reject claim (that $p>0.22$) or accept that $\boldsymbol{p}=0.22$	B1		Dependent on 22 seen in (b)(i) or (ii) Accept diff $=0.1 \mathrm{CAO}$ Correct (numerical) comparison with correct conclusion (even if at end and stated as 'reject (both) claims')
	$\sqrt{17.1 \text { to } 17.2}=\underline{4.13 \text { to } 4.15 \approx /=4.17}$			Comparison using two values or one value + diff (0.02 to 0.04 AWFW)
	$17.1 \text { to } 17.2 \approx /=17.3 \text { to } 17.4$			Comparison using two values or one value + diff (0.1 to 0.3 AWFW)
	reject claim that not random samples or accept that are random samples	Bdep1	3	Dependent on previous B1 Correct conclusion regarding randomness of sample
	Total		14	

MS/SS1B (cont)

