Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MS/SS1B

(Specification 6360)

Statistics 1B

PMT

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

	~			~
Q	Solution	Marks	Total	Comments
1 (a)	$r = \frac{S_{xy}}{\sqrt{S_{xx} \times S_{yy}}} = \frac{-0.410}{\sqrt{2.030 \times 1.498}} = -0.235$	M1 A1	2	Correct substitution into correct formula May be implied by a correct answer AWRT (-0.235115)
(b)	Some / (very) weak / (very) little / (very)slight negative correlation/relationship/association/link	Adep1		Dependent on -0.235 or -0.24 OE; must qualify strength and state negative Ignore extra words unless contradict Not 'no', 'low', 'small', 'unlikely' or 'trend'
	width and thickness of lengths of steel	B1	2	Context; do not allow 'cms' or 'mms'
SC	$r = (+)0.235 \implies M1 \text{ A0 Adep0 B1 max}$			
	Total		4	

Q	Solution	Marks	Total	Comments
2 (a)(i)	Mode = 23	B1	1	САО
(ii)	Median (88 th value) = $\underline{22}$	B1		CAO
	Upper quartile $(132^{nd} value) = 23$	B 1		$C\Delta\Omega$, either
	Lower quartile (44 th value) = $\underline{20}$	DI		May be implied by $IQR = 3$
	Interquartile range = $\underline{3}$	B1	3	CAO; do not award if seen to be not based on 23 and 20
(b)	Mean = 22.3	B2		CAO; but only award B1 (22.3) if incorrect mid-points or Σ fr seen
	Mean = 21 to 23	(B1)		AWFW $(\Sigma fx = 3902.5)$
	Standard deviation = $\frac{6.37 \text{ or } 6.39}{5 \text{ to } 7}$	B2 (B1)	4	AWRT $(s = 6.391 \ \sigma = 6.372)$ AWFW $(\Sigma f x^2 = 94132.25)$
SC	Only if B0 B0 or B1 B0 then award as follows but only up 1 At least 2 correct mid-points 4.5, 14.5, 27, 32, 37, 44.5, 54 2 Clear use of $\Sigma fx/(175 \text{ or } 174) \Rightarrow M1$	to a maxim seen ⇒	um total p a M1	art mark of 2
(c)	Mean = (c's mean from (b)) + $\frac{280}{175}$	M1		Adding (1.6 or equivalent) CAO to (c's mean from (b)) or to (c's new mean)
	-22.5 + 1.0 Mean $= 23.9$	AF1	2	F on (c's mean from (b)) or on (c's new mean)
	Total		10	

QSolutionMarksTotalComments3b (gradient) = 2.27 b (gradient) = 2.21 to 2.3 (B1)B2 (B1)AWRT(2.27075) AWFWa(intercept) = 4.16 to 4.2 a (intercept) = 3 ± 0.7 B2 (B1)AWFW(2.27075) AWFWAttempt at $\sum x \sum^{2} \sum y \& \sum x' (\sum y')$ or Attempt at $\sum x \sum^{2} \sum y \& \sum x' (\sum y')$ (M1)(B1)AWFW(4.16981) AWFWAttempt at $\sum x \sum^{2} \sum y \& \sum x' (\sum y')$ (Attempt at correct formula for b (gradient) b (gradient) = 2.27 (A1)(M1)5300 & 12035 (27608) (both attempted)Notes1 Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a can b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a can b interchanged and equation $y = a + b$ stated in (a) \Rightarrow 0 marks a 20 (300 \approx 1.2 a 3 also apply) 5 some all of marks can be scorent (n) (b) (4 (ii), event forecally of marks are lost in (a) anothe be recoursel by subsequent working in (b)(b)Correct stratight line drawn on scatter dingram correct sthortened and/or frechand line drawn on<	MS/SS1B	(cont)	1	1	T	
3 (a)b (gradient) = $\frac{2.27}{2.2 \text{ to } 2.3}$ (B1)B2 (B1)AWRT (2.27075)a (intercept) = $\frac{4.16 \text{ to } 4.2}{3 \text{ (intercept)} = \frac{3 \text{ to } 7}{3 \text{ to } 7}}$ (B1)B2 (B1)AWRT (2.27075)Attempt at $\sum x \sum^{x} \sum y \& \sum xy (\sum y^{z})$ or Attempt at correct formula for b (gradient) b (gradient) = $\frac{2.27}{2 \text{ (B1)}}$ (M1) (M1)Attempt at correct formula for b (gradient) b (gradient) = $\frac{2.27}{2 \text{ (A1)}}$ (A1)(M1)S00 & 12035 (27608) (both attempted)Notes1 Values of a and b interchanged and equation $y - a + b$ stated in (a) \rightarrow max of 4 marks 2 Values are not identified or simply $a - a^{2} + b$ stated in (a) \rightarrow max of 4 marks 2 Values are not identified or simply $a - a^{2} + b$ stated in (a) \rightarrow max of 4 marks 2 Values are not identified or simply $a - a^{2} + b$ stated in (a) $\rightarrow 0$ marks 3 Values are not identified or simply $a - a^{2} + b$ bate or $2.2 \text{ to } 2.3 \approx B1$ and $3 \text{ to } 7 \rightarrow B1$ bat cacept, for example, a 3 Values are not identified or simply $a - a^{2} + b$ for the or $2.2 \text{ to } 2.3 \approx B1$ and $3 \text{ to } 7 \rightarrow B1$ bat cacept, for example, a 4 b $- \frac{221252}{200}$ Co \rightarrow B2, otherwise B1 if fraction equares to $3 - 0 \text{ correct}$ 3 also apply 5 Some-all of marks can be scored in (b), and in c(i) & (ii), even if some-all of marks are lost in (a) but marks lost in (a) cannot be recorped by subsequent working in (b)(b)Correct straight line drawn on scatter diagramB2 (B1)1 in must go from $x \le 3$ to $x \ge 70$ and fall between the following 2 lines: 1 Low(0, 0) (80, 190)Notes1 if 80 but no scene oriel attempt at ≥ 2 points corn if incorrectly marked on scatter diagram $\Rightarrow M0$ (c)(i) $27 \text{ to } 29$ (iii)B11	Q	Solution	Marks	Total	Comments	
(a) $b \text{ (gradient)} = 227 \text{ bd} (227075)$ $b \text{ (gradient)} = 221 \text{ bd} (23 \text{ (B1)})$ AWRT (227075) AWRT $a \text{ (intercept)} = 4.16 \text{ to} 4.2 \text{ bd} (23 \text{ cm} 23 \text{ to} 23)$ (B1)AWRT (227075) AWFW $a \text{ (intercept)} = 3 \text{ to} 27 \text{ (B1)}$ AWRT (227075) AWFW(A16981) AWFWAttempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ (B1)AWFW (4.16981) AWFWAttempt at $\sum a \& S_{yy} (S_{yy})$ (M1) $AWRT$ (227075) AWFWAttempt at correct formula for b (gradient)(m1) b (gradient) = 2.27 (A1)(A1) $AWRT$ Attempt at correct formula for b (gradient)(m1) b (gradient) = 2.27 (A1)(A1) $AWRT$ Values of a and b interchanged and equation $y = a + b$ stated in $(a) = 0$ marks $3 \text{ Values of } a$ and $b = 4 \text{ th} a + 6 \text{ to} 22 \text{ to} 23 \text{ cost} 1, 24 \text{ sabs apply}$ Notes1 Values of a and b interchanged and equation $y = a + b$ stated in $(a) = 0$ marks $3 \text{ values for a in (b) 20 \text{ cost} 1, 24 \text{ sabs apply}Somell of marks can be scored in (b) and in (01) \& (01) (with equation for a \& b in or 1 (morequ) and (a) to (a \times 1008 \text{ cost} 1, 24 \text{ sabs apply})Somell of marks can be scored in b = 4 \text{ ad } b = 4 \text{ the equation or a start and and b equation for a \& b > 0 (in (in (23) (80) (80))Correct shortened and/or freehand line drawn on scatter diagramB2Correct shortened and/or freehand line drawn on scatter diagramB2I if B0 but seen correct atompt at \geq 2 points correct or incorrect) marked on scatter diagram \supset M0(iii)27 \text{ to 29}B11$	3					
$b (gradient) = \frac{f_{\perp}^{2} \text{ Io } \frac{f_{\perp}^{2}}{2} \text{ (B1)}}{a (intercept) = \frac{4.16 \text{ Io } 4.2}{3 \text{ Io } 7} \text{ (B1)}}$ $a (intercept) = \frac{4.16 \text{ Io } 4.2}{3 \text{ Io } 7} \text{ (B1)}$ $Attempt at \sum_{x} \sum_{x} \sum_{y} \sum_{y} \sum_{x} \sum_{y} \sum_{y} \sum_{x} y \sum_{x} y \sum_{y} y \sum_{x} y \sum_{y} y \sum_{x} y \sum_{y} y \sum_{x} y \sum_{y} y \sum_{x} z y z z z \sum_{x} z z z z z z z z z z z z z z z z z z z$	(a)	$b \text{ (gradient)} = \frac{2.27}{2.22}$	B2		AWRT (2.27075)	
$a \text{ (intercept)} = \frac{4.16 \text{ to } 4.2}{3 \text{ to } 7} \text{ (B1)} B2 \\ a \text{ (intercept)} = \frac{3 \text{ to } 7}{3 \text{ to } 7} \text{ (B1)} AWFW (4.16981) $		$b (\text{gradient}) = \frac{2.2 \text{ to } 2.3}{2.3}$	(B1)		AWFW	
a dimerce by $= \underline{3 \cdot 10 \cdot 7}$ (B1)AWFW(4.10361)Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ (B1)AWFW(4.10361)or(M1)Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ (M1)Attempt at $\sum x \& S_{xy} (S_{yy})$ (M1)Attempt at $\sum x \& S_{xy} (S_{yy})$ (M1)Attempt at $\sum x \& S_{xy} (S_{yy})$ (M1)(M1)Attempt at $\sum x \& S_{xy} (S_{yy})$ (M1)(M1)Attempt at $\sum x \& S_{xy} (S_{yy})$ (M1)Attempt at $\sum x \& S_{xy} (S_{yy})$ (M1)Attempt at $\sum x \& S_{xy} (S_{yy})$ (M1)Attempt at $\sum x \& S_{xy} (S_{yy})$ Attempt at $\sum x \& S_{xy} (S_{yy})$ Attempt at $\sum x \& S_{xy} (S_{yy})$ (M1)Attempt at $\sum x \& S_{xy} (S_{yy})$ Attempt at $\sum x \& S_{xy} (S_{yy})$ <td cols<="" td=""><td></td><td>a (intercept) - 4.16 to 4.2</td><td>D)</td><td></td><td>A WEW (4 16081)</td></td>	<td></td> <td>a (intercept) - 4.16 to 4.2</td> <td>D)</td> <td></td> <td>A WEW (4 16081)</td>		a (intercept) - 4.16 to 4.2	D)		A WEW (4 16081)
InterventionInterventionInterventionAttempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ or(M1)(M1)480 24500 1140 & 57635 (135908) (all 4 attempted)Attempt at $\sum_x \& S_x (S_x)$ (M1)(M1)5300 & 12035 (27608) (both attempted)Attempt at correct formula for b (gradient) b (gradient) = 2.27 a (intercept) = 4.16 to 4.2(M1)AWRT AWFWNotes1 Values of a and b interchanged and equation $y = ax + b$ stated in (a) \Rightarrow max of 4 marks2 Values of a and b interchanged and equation $y = a + bx$ stated in (a) \Rightarrow max of 4 marks3 Values are not identified or simply $a = \pi$ and $b = \pi$ then 2.2 to 2.3 \Rightarrow B1 and 3 to $7 \Rightarrow$ B1 but accept, for example, as identified and $y = \pi$ and $b = \pi$ then 2.2 to 2.2 to 2.3 (States 1.2 & 3 als apply)4 $b = \frac{2007100}{22007100}$ CO \Rightarrow B2, otherwise B1 if fraction equates to 2.1 to 2.3 \Rightarrow B1 and 3 to $7 \Rightarrow$ B1 but accept, for example, as identified and/or freehand line drawn on scatter diagram(b)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2 Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)Notes1 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(iii)27 to 29 Line B1At low temperatures more B (than A) dissolves A thigh temperatures more B (than A) dissolvesB1 Line Correct shout on $x \Rightarrow x \ge 20$ 		$\frac{u(\text{intercept}) - \frac{4.10 \text{ to } 4.2}{3 \text{ to } 7}}{a(\text{intercept}) - 3 \text{ to } 7}$	(B1)		$\Delta WFW \qquad (4.10981)$	
Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ or Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ or Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$ (M1)(M1) (M1)480 24500 1140 & 57635 (135908) (all 4 attempted)Attempt at correct formula for b (gradient) b (gradient) = 2.27 a (intercept) = $4.16 \ to 2.42$ (A1)(A1) 4AWRT AWFWNotes1 Values of a and b interchanged and equation $y = ax + bx$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y = a + bx$ stated in (a) \Rightarrow max of 4 marks 2 Values are not identified or simply $a = 4$ and $b = 4$, then $2.2 \ to 2.3 \Rightarrow B1$ and $3 \ to 7 \Rightarrow B1$ but accept, for example, as is identification, if $a \in b$ b = 2.2071600 CAO \Rightarrow B2, otherwise B1 if fraction equates to $3 \ to 7$ (Notes $1, 2 \& 3 \ also apply)$ (b)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2 (B1)Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 lines: Lower: (10, 25) (60, 180)(c)(i)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2 (B1)Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 lines: Lower: (10, 50) (80, 190)Notes1 If B0 but no seen evidence to support ≥ 2 points even if incorrect) avaluated \Rightarrow M1 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(iii) $\frac{27 \ to \ 29}{14 \ 10 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12$		u (intercept) = $5 to 7$	(D1)			
or(M1)5300 & 12035 (27608) (both attempted)Attempt at correct formula for b (gradient) b (gradient) = 2.27 a (intercept) = 4.16 to 4.2(m1) (A1)AWRT AWFWNotes1 Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks 2 Values are at identified or simply $a = 4$ and $b = 4$, then 2.2 to $2.3 \Rightarrow B1$ and 3 to $7 \Rightarrow B1$ but accept, for example, as identified or simply $a = 4$ and $b = 4$, then 2.2 to $2.3 \Rightarrow B1$ and 3 to $7 \Rightarrow B1$ but accept, for example, as identified or simple a b the b the to substitution for $a & b$ or functions ($a = 4, b = 4$ with $y = a + br but no substitution for a & b or function (b = 4]4 b \frac{2407/1060}{CO \Rightarrow B2}, otherwise B1 if fraction equates to 3 \pm 0.7. (Notes 1, 2 & 3 also apply)5 Someall of marks can be scored in (b), and in (cii) & (iii), even if some/all of marks are lost in (a) but marks lost in (a) cannot berecouped by subsequent working in (b)(b)Correct straight line drawn on scatter diagramCorrect straight line drawn onscatter diagram(b)1 If B0 but seen correct attempt at \ge 2 points (correct or incorrect) marked on scatter diagramCorrect straight line drawn onscatter diagram(cif)Correct straight line drawn on scatter diagramcorrect straigram(B1)2 If B0 but seen correct attempt at \ge 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(iii)1 If B0 but seen correct attempt at \ge 2 points (correct or incorrect)$		Attempt at $\sum x \sum x^2 \sum y \& \sum xy (\sum y^2)$			480 24500 1140 & 57635 (135908) (all 4 attempted)	
Attempt at $S_x & S_y (S_y)$ (m1) (A1)5300 & 12035 (27608) (both attempted)Attempt at correct formula for b (gradient) b (gradient) $= 2.27$ 		or	(M1)			
Attempt at correct formula for b (gradient) b (gradient) c (a) (A1)(m1) (A1)AWRT AWFWNotes1 Values of a and b interchanged and equation $y = ax + b$ stated in (a) \Rightarrow max of 4 marks 2 Values of a and b interchanged and equation $y = ax + b$ stated in (a) \Rightarrow max of 4 marks 3 Values are not identified or simply $a = \#$ and $b = \#$, then 2.2 to 2.3 \Rightarrow B1 and 3 to 7 \Rightarrow B1 but accept, for example, as identification. $[a = \#, b = \#$ with $y = a + bx$ but no substitution for $a \notin b$ for [intercept(a) = #, gradient(b) = #] 4 $b = 24071060$ CAO \Rightarrow B2, otherwise B1 if fraction equates to 3 to 7 (Notes 1, 2 & 3 also apply) a = 221252 CAO \Rightarrow B2, otherwise B1 if fraction equates to 3 to 7 (Notes 1, 2 & 3 also apply) 5 Some/all of marks can be scored in (b), and in c(ii) & (iii), even if some/all of marks are lost in (a) but marks lost in (a) cannot be recouped by subsequent working in (b)(b)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2Line must go from $x \le 20$ to $x \ge 70$ and fail between the following 2 lines: Lower: (10, 20) (80, 180) Upper: (10, 20) (80, 180)(c)(i)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2Line must go from $x \le 20$ to $x \ge 70$ and fail between the following 2 lines: Lower: (10, 60) (80, 75)(iii)1 ff B0 but seen correct attempt at ≥ 2 points (correct or incorrect) warked on scatter diagram \Rightarrow M0(iiii)At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolves At high temperatures more A (than B) dissolves At high temperatures more A (than B) dissolvesB11At low temperatures more A (than B) dissolves		Attempt at S_{xx} & S_{xy} (S_{yy})			5300 & 12035 (27608) (both attempted)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Attempt at correct formula for b (gradient)	(m1)			
a (intercept) = 4.16 to 4.2 (A1)(A1)4AWFWNotes1 Values of a and b interchanged and equation $y = ax + b$ stated in (a) \Rightarrow max of 4 marks 2 Values or a and b interchanged and equation $y = a + bx$ stated in (a) \Rightarrow 0 marks 3 Values are not identified or simply $a = #$ and $b = #$, then $z \ge 10 \cdot 23 \Rightarrow B1$ and 3 to $7 \Rightarrow B1$ but accept, for example, as 		$b (\text{gradient}) = \underline{2.27}$	(A1)		AWRT	
Notes1Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow max of 4 marks2Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow 0 marks3Values of a and b interchanged and equation $y = a + b$ stated in (a) \Rightarrow 0 marks3Values or a otioentified or simply $a = \#$ and $b = \#$, then $2 \ge 10 \ge 3 \Rightarrow 11$ and $3 to 7 \Rightarrow B1$ and $3 to 7 \Rightarrow B1$ but accept, for example, as identification, $[a = \#, b = \frac{1}{2}, 0) \Rightarrow 0$, otherwise B1 if fraction equates to $2 \ge 0 \ge 3$ (Notes 1, $2 \& 3$ also apply)4 $b = \frac{22U(23)}{20071060}$ CAO \Rightarrow B2, otherwise B1 if fraction equates to $2 \ge 0 \ge 3$ (Notes 1, $2 \& 3$ also apply)5Some/all of marks can be scored in (b), and in c(ii) & (iii), even if some/all of marks are lost in (a) but marks lost in (a) cannot be recouped by subsequent working in (b)(b)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramCorrect shortened and/or freehand line drawn on scatter or incorrect) marked on scatter diagram Correct shortened and/or freehand line drawn on scatter diagram(c)(i)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagram(b)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagram(b)If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M1(c)(i)Correct shortened and/or freehand line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagram(B1)2Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 lines: Lower: (10, 60) (80, 75)(iii)1 f B0 but		a (intercept) = 4.16 to 4.2	(A1)	4	AWFW	
(b)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 lines: Lower: (10, 25) (80, 180) Upper: (10, 30) (80, 190)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow MI 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow MI 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(iii)2 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow MI 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(iii)27 to 29B11(iii)At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolvesB12B12Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C)Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)B12Either; OE Any comments about b or $a \Rightarrow$ B0 Correct interve must relate to tempTotal1111	Notes	 Values of a and b interchanged and equation y = ax + Values of a and b interchanged and equation y = a + Values are not identified or simply a = # and b = #, th identification, [a = #, b = # with y = a + bx but not b = 2407/1060 CAO ⇒ B2, otherwise B1 if fraction a = 221/53 CAO ⇒ B2, otherwise B1 if fraction Some/all of marks can be scored in (b), and in c(ii) & (iii), recouped by subsequent working in (b) 	b stated in bx stated in en 2.2 to 2 substitution equates to equates to even if som	(a) \Rightarrow max (a) \Rightarrow 0 for $a \approx b$ 1.3 \Rightarrow B1 in for $a \ll b$ 2.2 to 2.3 3 to 7 re/all of mar	ax of 4 marks marks and 3 to 7 \Rightarrow B1 but accept, for example, as b] or [intercept(a) = #, gradient(b) = #] (Notes 1, 2 & 3 also apply) (Notes 1, 2 & 3 also apply) ks are lost in (a) but marks lost in (a) cannot be	
Correct shortened and/or freehand line drawn on scatter diagram(B1)2(B1)2(B1)Correct (10, 25) (80, 180) Upper: (10, 30) (80, 190)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M1M1Line must go from $x \leq 20$ to $x \geq 70$ and fall between the following 2 lines: Lower: (10, 25) (80, 180)(c)(i)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2Line must go from $x \leq 20$ to $x \geq 70$ and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M1Line must go from $x \leq 20$ to $x \geq 70$ and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M12 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(iii) 27 to 29 (iii)At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolvesB11B12B12B12B12B12B12B12B12B12B12B11B12B12B11B12B12B12B12B1 <t< th=""><th>(b)</th><th>Correct straight line drawn on scatter diagram</th><th>B2</th><th></th><th>Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 linear</th></t<>	(b)	Correct straight line drawn on scatter diagram	B2		Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 linear	
scatter diagram(B1)2Upper: (10, 30) (80, 190)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow MI2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(c)(i)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2 (B1)Line must go from $x \leq 20$ to $x \geq 70$ and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)Notes1 If B0 but seen correct attempt at ≥ 2 points (correct or incorrect) walked \Rightarrow M12 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(ii) $\frac{27 \text{ to } 29}{4}$ (iii)At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolvesB11B12B12B12B12B12B12B12B12B12B12B11B12B2		Correct shortened and/or freehand line drawn on			Lower: (10, 25) (80, 180)	
Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M12 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(c)(i)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2 (B1)Line must go from $x \leq 20$ to $x \geq 70$ and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M1Line must go from $x < 20$ to $x \geq 70$ and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M1(ii) 27 to 29 At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolves Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)B12Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C)4Mount increases more slowly for B (than A)B12Either; OE Any comments about b or $a \Rightarrow$ B0 Comment about 'rate' must relate to temp		scatter diagram	(B1)	2	Upper: (10, 30) (80, 190)	
(c)(i)Correct straight line drawn on scatter diagram Correct shortened and/or freehand line drawn on scatter diagramB2 (B1)Line must go from $x \le 20$ to $x \ge 70$ and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M1 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(ii) 27 to 29 B11AWFW Must clearly identify x-value Thus (27 to 29, y-value) \Rightarrow B0(iii)At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolves At high temperatures more a point (than B) Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)B12B12Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0° C)Total11	Notes	 If B0 but seen correct attempt at ≥2 points even if incorr If B0 but no seen evidence to support ≥2 points (correct 	 rectly evalua t or incorrec 	 ated ⇒ M et) marked o 	1 n scatter diagram \Rightarrow M0	
Correct shortened and/or freehand line drawn on scatter diagramD2and fall between the following 2 lines: Lower: (10, 60) (80, 75) Upper: (10, 65) (80, 85)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M1 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(ii)27 to 29B11AWFW (calculation \Rightarrow 27.75) Must clearly identify x-value Thus (27 to 29, y-value) \Rightarrow B0(iii)At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolvesB12B12Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C)Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)B12Total11	(c)(i)	Correct straight line drawn on scatter diagram	B2		Line must go from $x \le 20$ to $x \ge 70$	
scatter diagram(B1)2Dower: (10, 60) (80, 73) Upper: (10, 65) (80, 85)Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M1 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(ii)27 to 29B11AWFW (calculation \Rightarrow 27.75) Must clearly identify x-value Thus (27 to 29, y-value) \Rightarrow B0(iii)At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolvesB12Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C)Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)B12Either; OE Any comments about b or $a \Rightarrow$ B0 Comment about 'rate' must relate to temp		Correct shortened and/or freehand line drawn on			and fall between the following 2 lines:	
Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated $\Rightarrow M1$ 2 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram $\Rightarrow M0$ (ii) $27 \text{ to } 29$ B11AWFW (calculation $\Rightarrow 27.75$)Must clearly identify x-valueThus (27 to 29, y-value) $\Rightarrow B0$ (iii)At low temperatures more B (than A) dissolvesAt high temperatures more A (than B) dissolvesAt high temperatures more A (than B) dissolvesAmount increases more rapidly for A (than B)Amount increases more slowly for B (than A)B12Comment about 'rate' must relate to tempTotal11		scatter diagram	(B1)	2	Upper: (10, 65) (80, 75)	
Notes1 If B0 but seen correct attempt at ≥ 2 points even if incorrectly evaluated \Rightarrow M12 If B0 but no seen evidence to support ≥ 2 points (correct or incorrect) marked on scatter diagram \Rightarrow M0(ii) $27 \text{ to } 29$ B11AWFW (calculation $\Rightarrow 27.75$)Must clearly identify x-valueThus (27 to 29, y-value) \Rightarrow B0(iii)At low temperatures more B (than A) dissolvesAt high temperatures more A (than B) dissolvesAt high temperatures more A (than B) dissolvesAmount increases more rapidly for A (than B)Amount increases more slowly for B (than A)B12Either; OEAmount increases more slowly for B (than A)Total11						
(ii)27 to 29B11AWFW (calculation \Rightarrow 27.75) Must clearly identify x-value Thus (27 to 29, y-value) \Rightarrow B0(iii)At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolvesB11Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C)Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)B12Either; OE Any comments about b or $a \Rightarrow$ B0 Comment about 'rate' must relate to tempTotal1111	Notes	 1 If B0 but seen correct attempt at ≥2 points even if incorr 2 If B0 but no seen evidence to support ≥2 points (correct 	rectly evalua or incorrect	ted \Rightarrow M (ted) to marked or	1 a scatter diagram ⇒ M0	
(iii)At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolvesB1Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C)Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)B12Either; OE Any comments about b or $a \Rightarrow B0$ Comment about 'rate' must relate to tempTotal11	(ii)	<u>27 to 29</u>	B1	1	AWFW(calculation \Rightarrow 27.75)Must clearly identify x-valueThus (27 to 29, y-value) \Rightarrow B0	
Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)B12Either; OE Any comments about b or $a \Rightarrow B0$ Comment about 'rate' must relate to tempTotal11	(iii)	At low temperatures more B (than A) dissolves At high temperatures more A (than B) dissolves	B1		Either; OE (eg a comparison using lines and/or data at a specific temperature but not at 0°C)	
Total 11		Amount increases more rapidly for A (than B) Amount increases more slowly for B (than A)	B1	2	Either; OE Any comments about b or $a \Rightarrow B0$ Comment about 'rate' must relate to temp	
		Total		11		

PMT

PMT

MS/SS1E	(cont)	T = = = =		
Q	Solution	Marks	Total	Comments
4 (a)(i)	P(P-2) =			Ratios (eg 194:640) are only penalised by 1 accuracy mark at first correct answer
(a)(l)	P(B = 5) = 194/640 or 97/320 or 0.303 or 30.3%	B1	1	CAO or AWRT (0.303125)
(ii)	$P(T \ge 2) = \frac{172 + 256 + 135}{640} \text{ or } 1 - \frac{77}{640} \text{ or } \frac{563}{640} = \frac{563/640}{563/640}$	M1		САО
	or (0.879 to 0.88) or (87.9% to 88%)	A1	2	AWFW (0.879688)
(iii)	P(B = 3 & T ≥ 2) = $\frac{72 + 99 + 16}{640} \text{ or } \frac{194 - 7}{640} \text{ or } \frac{187}{640}$	M1		
	= <u>187/640 or 0.292 or 29.2%</u>	A1	2	CAO or AWRT (0.292188)
(iv)	$P(B \le 3 T = 2) = \frac{(14 + 67 + 72)}{172} \text{ or } \frac{172 - 19}{172} \text{ or } \frac{153}{172}$	M1 M1		Correct numerator (accept both ÷ 640) Correct denominator
	= <u>153/172</u> or (0.888 to 0.89) or (88.8% to 89%)	A1	3	CAO AWFW (0.889535)
(b)	$(a)(i) \times (a)(ii) \neq (a)(iii)$ since	M1		Answers as fractions, percentages or ratios lose accuracy (A & B) marks in (b) & (c) Attempted
	$0.303 \times 0.88 = 0.265 \text{ to } 0.27 \neq 0.292$	A1	2	AWFW & AWRT
SC	Any correct fully-explained reasoning, using other than any numerically correct decimals (to 3 dp) \Rightarrow B1 (eg P(B = no/unclear/incomplete reasoning or no/incorrect/incomplete	 wers from pa = 3) = 0.303 numerical v 	 art (a), which 3 ≠ P(B = vork ⇒ B 	h results in an inequality (\neq) with both sides as 3 T = 2) = 72/172 = 0.419) but 0
(c)	$P(2T \cap 3T \cap \ge 4T \mid B = 3) = \frac{72}{194} \times \frac{99}{193} \times \frac{16}{192}$	M1 M1		Correct 3 values multiplied in numerator Correct 3 values multiplied in denominator $0.371 \times 0.513 \times 0.083$ (all AWRT) \Rightarrow M1 M1 (OE products)
	<i>abc</i> multiplied by 6 or 3	M1		0 < (a, b & c) < 1
	= 0.095 to 0.0952	A1	4	AWFW (0.095187)

	- 0.095 to 0.0952	AI	4		(0.095187)
Notes	1 Incorrect answer with no working $\Rightarrow 0$ marks 2 The 3 correct fractions/decimals identified but not multiple 3 The 3 correct fractions/decimals identified together with 4 A denominator of ${}^{194}C_2 = 1198144 \Rightarrow M2 (2^{nd} \& 3^{nc})$	lied (eg add 0.016 (AW) ¹ M1 marks		1 M0 M0 A0 1 M1 M0 A0	
	Total		14		

Q Solution Marks Total Comments 5 In (a) (b c), [anor the inclusion of a lower limit of 0; it has no effect on either answer limit of 0; it has no effect	MS/SS1B (cont)						
5 In (a)(i) & (c); ignore the inclusion of a lower limit of c; it has no effect on either answer (a) Weight, W = N(2.75, 0.15 ²) M1 (i) $P(W < 2.8) = P(Z < \frac{2.8 - 2.75}{0.15})$ M1 $= 0.629 \text{ to } 0.633$ A1 A1 $= 0.629 \text{ to } 0.633$ A1 AWRT/CAO; ignore inequality and sign May be implied by a correct answer (ii) $P(W > 2.5) = P(Z > -1.67) = P(Z < +1.67)$ M1 AWFW (0.63056) (iii) $P(W > 2.5) = P(Z > -1.67) = P(Z < +1.67)$ M1 AWFW (0.95221) (b) Weight, X - N(5.25, 0.20 ²) H1 5 AWFW (0.95221) (b) Weight, X - N(5.25, 0.20 ²) B1 Accept 0.579 Accept 0.579 or 0.227 (ii) P(5.1 < X < 5.3) = P(Z < 0.25) - P(Z < -0.75) = 0.59871 B1 Accept 0.773 or 0.227 MINUS [(1 - 0.77337) or 0.2263] B1 2 Accept 0.773 or 0.227 AG; do not mark simply on answer or G Accept 0.579 Accept 0.773 or 0.227 (c) Weight, Y - N(10.75, 0.50 ³) B1 Accept 0.773 or 0.227 AG; do not mark simply on answer (c) Weight, Y - N(10.75, 0.50 ³) B1 Accept 1 - c	Q	Solution	Marks	Total	Comments		
(i) $P(W < 2.8) = P\left(Z < \frac{2.8 - 2.75}{0.15}\right)$ M1 Standardising 2.8 with 2.75 and 0.15; allow $(2.75 - 2.8)$ (ii) $P(W < 2.8) = P(Z < \frac{0.33 \text{ or } 1/3}{0.15})$ A1 A1 AWRT/CAO; ignore inequality and sign May be implied by a correct answer (iii) $P(W > 2.5) = P(Z > -1.67) = P(Z < +1.67)$ M1 AWFW (0.63056) (iii) $P(W > 2.5) = P(Z > -1.67) = P(Z < +1.67)$ M1 AWFW (0.63056) (i) $P(W > 2.5) = P(Z > -1.67) = P(Z < +1.67)$ M1 Samawer b influe by a correct answer or an answer > 0.5 (b) Weight, $X - N(5.25, 0.20^2)$ A1 5 AWFW (0.95221) (ii) $P(5.1 < X < 5.3) = P(Z < 0.25) - P(Z < -0.75)$ B1 B1 Accept 0.599 Accept 0.599 (iii) $P(0 \text{ in } 4) = [1 - 0.372]^d$ M1 Accept 0.599 Accept 0.599 Accept 0.599 (iii) $P(0 \text{ in } 4) = [1 - 0.372]^d$ M1 Accept 0.599 Accept 0.173 or 0.227 (c) Weight, $Y - N(10.75, 0.50^2)$ B1 B1 CAO or AWFW Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ (c) Weight, $Y - N(10.75, 0.50^2)$ B1 B1 Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ Corre	5 (a)	Weight, $W \sim N(2.75, 0.15^2)$			In (a)(i) & (c), ignore the inclusion of a lower limit of 0; it has no effect on either answer		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(i)	$P(W < 2.8) = P\left(Z < \frac{2.8 - 2.75}{0.15}\right)$	M1		Standardising 2.8 with 2.75 and 0.15; allow $(2.75 - 2.8)$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		= P(Z < 0.33 or 1/3)	A1		AWRT/CAO; ignore inequality and sign May be implied by a correct answer		
(ii) $P(W > 2.5) = P(Z > -1.67) = P(Z < +1.67)$ M1 Correct area change May be implied by a correct answer or an answer > 0.5 (b) Weight, $X \sim N(5.25, 0.20^{2})$ A1 5 AWFW (0.95221) (i) $P(5.1 < X < 5.3) = P(Z < 0.25) - P(Z < -0.75)$ = 0.59871 B1 S AWFW (0.95221) (ii) $P(5.1 < X < 5.3) = P(Z < 0.25) - P(Z < -0.75)= 0.59871 B1 S AWFW (0.9529) (iii) P(0 \text{ in 4}) = [1 - 0.372]^4 M1 Accept 0.579 ACcept 0.773 or 0.227AG; do not mark simply on answer (iii) P(0 \text{ in 4}) = [1 - 0.372]^4 M1 Accept [1 - c^*s (b)(i)]^4 (c) Weight, Y - N(10.75, 0.50^{2}) B1 Z ACCPT (1 - c^*s (b)(i)]^4 Variance of \overline{Y_6} = 0.57/6 = 0.204 B1 CAO or AWFWStated or usedCAO or AWRT Standardising 10.5 with 10.75 and\sqrt{0.0416} M1 Standardising 10.5 with 10.75 and\sqrt{0.0416} OE; allow (10.75 - 10.5) P(\overline{Y_6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) = M1 Standardising 10.5 with 10.75 and\sqrt{0.0416} OE; but do notaward for use of z = \pm 0.22 1 - (0.88877 \text{ to } 0.89065) = 0.109 \text{ to } 0.112 A1 4 AWFW (0.11034)(1 - answer) \Rightarrow B1 M1 max$		= <u>0.629 to 0.633</u>	A1		AWFW (0.63056)		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ii)	P(W > 2.5) = P(Z > -1.67) = P(Z < +1.67)	M1		Correct area change May be implied by a correct answer or an answer > 0.5		
(b) Weight, $X \sim N(5.25, 0.20^2)$ Must have diff of 2 probs for each B1 (i) P(5.1 < X < 5.3) = P(Z < 0.25) - P(Z < -0.75) = 0.59871 B1 B1 B1 B1 Cacept 0.599 Accept 0.773 or 0.227 (ii) P(0 in 4) = [1 - 0.372]^4 M1 Accept 0.773 or 0.227 AG; do not mark simply on answer (iii) P(0 in 4) = [1 - 0.372]^4 M1 Accept 1 - c's (b)(i)]^4 (c) Weight, $Y \sim N(10.75, 0.50^2)$ B1 B1 CAO or AWFW Variance of $\overline{Y_6} = 0.5!/6 = 0.0416$ to 0.0417 B1 CAO or AWFW Stated or used $CAO or AWFW$ Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow (10.75 - 10.5) Correct area change $P(\overline{Y_6} < 10.5) = P(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}) =$ M1 Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow (10.75 - 10.5) $P(\overline{Y_6} < 10.5) = P(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}) =$ M1 Standardising 10.5 with 10.75 - 10.5) $P(Z < -1.22) = 1 - P(Z < 1.22) =$ m1 M1 M2 M2 $1 - (0.88877 to 0.89065) = 0.109 to 0.112$ A1 4 AWFW (0.11034) $(1 - answer) \Rightarrow B1 M1 max$ M3 M3 M3 M3		= <u>0.951 to 0.953</u>	A1	5	AWFW (0.95221)		
(i) $P(5.1 < X < 5.3) = P(Z < 0.25) - P(Z < -0.75)$ $= 0.59871$ MINUS $[(1 - 0.77337)$ or $0.22663]$ $= 0.372(08)$ B1 B1 B1 B12Must have diff of 2 probs for each B1 Accept 0.599 Accept 0.773 or 0.227 AG; do not mark simply on answer(ii) $P(0 \text{ in } 4) = [1 - 0.372]^4$ $= 0.628^4 = 0.155 \text{ to } 0.156$ $= 0.628^4 = 0.155 \text{ to } 0.156$ A1A12AwFW Accept $[1 - c's (b)(i)]^4$ (c)Weight, $Y \sim N(10.75, 0.50^2)$ Variance of $\overline{Y_6} = 0.5^2/6 = 0.0416$ to 0.0417 or Sd of $\overline{Y_6} = 0.57/6 = 0.204$ B1CAO or AWFW Stated or used CAO or AWFT $P(\overline{Y_6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ M1Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow (10.75 - 10.5) $P(\overline{Y_6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ M1At the arrow of a naswer < 0.5 ; but do not award for use of $z = \pm 0.22$ $1 - (0.88877 \text{ to } 0.89065) = 0.109 \text{ to } 0.112$ A14AWFW AWFW (0.11034) (1 - answer) \Rightarrow B1 M1 max	(b)	<u>Weight, $X \sim N(5.25, 0.20^2)$</u>					
(ii) P(0 in 4) = $[1 - 0.372]^4$ M1 Accept $[1 - c's (b)(i)]^4$ $= 0.628^4 = 0.155 \text{ to } 0.156$ A1 2 AWFW (0.15554) (c) Weight, $Y \sim N(10.75, 0.50^2)$ A1 2 AWFW (0.15554) Variance of $\overline{Y_6} = 0.5^2/6 = 0.0416$ to 0.0417 or B1 CAO or AWFW Stated or used CAO or AWRT CAO or AWFW $P(\overline{Y_6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ M1 Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow (10.75 - 10.5) $P(\overline{Y_6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ m1 Correct area change May be implied by a correct answer or an answer < 0.5; but do not award for use of $z = \pm 0.22$ $1 - (0.88877$ to $0.89065) = 0.109$ to 0.112 A1 4 AWFW (0.11034) (1 - answer) \Rightarrow B1 M1 max	(i)	P(5.1 < X < 5.3) = P(Z < 0.25) - P(Z < -0.75) = 0.59871 MINUS [(1 - 0.77337) or 0.22663] = 0.372(08)	B1 B1	2	Must have diff of 2 probs for each B1 Accept 0.599 Accept 0.773 or 0.227 AG; do not mark simply on answer		
= $0.628^4 = 0.155 \text{ to } 0.156$ A1 2 AWFW (0.15554) (c) Weight, $Y \sim N(10.75, 0.50^2)$ B1 CAO or AWFW CAO or AWFW or Sd of $\overline{Y_6} = 0.5^2/6 = 0.0416$ to 0.0417 B1 CAO or AWFW $P(\overline{Y_6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ M1 Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow (10.75 - 10.5) $P(\overline{Y_6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ m1 Correct area change May be implied by a correct answer or an answer < 0.5; but do not award for use of $z = \pm 0.22$ $1 - (0.88877 \text{ to } 0.89065) = 0.109 \text{ to } 0.112$ A1 4 AWFW (0.11034) (1 - answer) \Rightarrow B1 M1 max	(ii)	$P(0 \text{ in } 4) = [1 - 0.372]^4$	M1		Accept $[1 - c's (b)(i)]^4$		
(c) Weight, $Y \sim N(10.75, 0.50^2)$ B1 CAO or AWFW Variance of $\overline{Y}_6 = 0.5^2/6 = 0.0416$ to 0.0417 B1 CAO or AWFW or Sd of $\overline{Y}_6 = 0.5/\sqrt{6} = 0.204$ B1 CAO or AWFW $P(\overline{Y}_6 < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ M1 Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow (10.75 - 10.5) $P(\overline{Y}_6 < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ m1 Correct area change $P(Z < -1.22) = 1 - P(Z < 1.22) =$ m1 Correct area change $1 - (0.88877 \text{ to } 0.89065) = 0.109 \text{ to } 0.112$ A1 4 AWFW (0.11034) (1 - answer) \Rightarrow B1 M1 max		$= 0.628^4 = 0.155 \text{ to } 0.156$	A1	2	AWFW (0.15554)		
Variance of $\overline{Y_6} = 0.5^2/6 = 0.0416$ to 0.0417 or $Sd of \overline{Y_6} = 0.5/\sqrt{6} = 0.204$ B1 CAO or AWFW Stated or used CAO or AWRT $P(\overline{Y_6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ M1 Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow (10.75 - 10.5) $P(\overline{Y_6} < 10.5) = P\left(Z < -1.22\right) = 1 - P(Z < 1.22) =$ m1 Correct area change May be implied by a correct answer or an answer < 0.5; but do not award for use of $z = \pm 0.22$ $1 - (0.88877$ to $0.89065) = 0.109$ to 0.112 A1 4 AWFW (0.11034) (1 - answer) \Rightarrow B1 M1 max	(c)	<u>Weight, $Y \sim N(10.75, 0.50^2)$</u>					
$P(\overline{Y_{6}} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) = M1$ $P(\overline{Y_{6}} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = 1 - P(Z < 1.22) = M1$ $P(Z < -1.22) = M$		Variance of $\overline{Y}_{6} = 0.5^{2}/6 = 0.0416$ to 0.0417 or Sd of $\overline{Y}_{6} = 0.5/\sqrt{6} = 0.204$	B1		CAO or AWFW Stated or used CAO or AWRT		
$P(Z < -1.22) = 1 - P(Z < 1.22) =$ m1Correct area change May be implied by a correct answer or an answer < 0.5; but do not award for use of $z = \pm 0.22$ $1 - (0.88877 \text{ to } 0.89065) = 0.109 \text{ to } 0.112$ A14AWFW (0.11034) (1 - answer) \Rightarrow B1 M1 maxTotal		$P(\overline{Y}_{6} < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$	M1		Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow (10.75 – 10.5)		
$\begin{array}{ c c c c c c c } \hline 1 & - & (0.88877 \text{ to } 0.89065) = \underline{0.109 \text{ to } 0.112} \\ \hline & & A1 \end{array} A1 \qquad A \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$		P(Z < -1.22) = 1 - P(Z < 1.22) =	m1		Correct area change May be implied by a correct answer or an answer < 0.5; but do not award for use of $z = \pm 0.22$		
Total 13		1 - (0.88877 to 0.89065) = 0.109 to 0.112	A1	4	AWFW(0.11034) $(1 - answer) \Rightarrow B1 M1 max$		
		Total		13			

MS/SS1B	(cont)	1	Г <u> </u>	
Q	Solution	Marks	Total	Comments
6 (a)(i)	<u>$U \sim B(30, 0.13, 0.35 \text{ or } 0.20)$</u>	M1		Used correctly anywhere in (a)
	$P(P=2) = {\binom{30}{2}} (0.13)^2 (0.87)^{28}$	A1		Can be implied by a correct answer
	= <u>0.148 to 0.15</u>	A1	3	AWFW (0.1489)
(ii)	p = 0.35	B 1		CAO
	$P(R \cup P > 10) = 1 - (0.5078 \text{ or } 0.3575)$	M1		Requires '1 –' Accept 3 dp rounding or truncation Can be implied by 0.49 to 0.493 but not by 0.642 to 0.643
	= <u>0.49 to 0.493</u>	A1	3	AWFW (0.4922)
(iii)	$P(5 \le G \le 10) = 0.9744 \text{ or } 0.9389$ (p_1)	M1		Accept 3 dp rounding or truncation
	MINUS 0.2552 or 0.4275 (<i>p</i> ₂)	M1		Accept 3 dp rounding or truncation
	$=$ <u>0.719 to 0.72</u> (p_3)	A1	3	AWFW (0.7192)
Notes	$\begin{array}{ccccc} 1 & p_3 \leq 0 & \text{or} & p_3 \geq 1 \implies & \text{M0 M0 A0} \\ 2 & p_2 - p_1 \implies & \text{M0 M0 A0} \\ 3 & (1 - p_2) - p_1 \implies & \text{M0 M0 A0} \end{array}$	1	4 5 6 (1	$p_1 - (1 - p_2) \implies M1 \text{ M0 A0}$ $p_1 \times p_2 \implies M1 \text{ M0 A0}$ $-p_2) - (1 - p_1) \implies M1 \text{ M1 (A1)}$
(b)(i)	Mean or $\mu = 100 \times 0.22$ = <u>22</u> Variance or $\sigma^2 = 100 \times 0.22 \times 0.78$	B1		CAO
	= <u>17.1 to 17.2</u>	B1	2	AWFW (ignore notation)(17.16)ISW all subsequent working
(ii)	22.1 $\approx/=$ 22 or means similar/equal or 0.221 $\approx/=$ 0.22 or proportions similar/equal so reject claim (that $p > 0.22$) or accept that $p = 0.22$	B1		Dependent on 22 seen in (b)(i) or (ii) Accept diff = 0.1 CAO Correct (numerical) comparison with correct conclusion (even if at end and stated as 'reject (both) claims')
	$\sqrt{17.1 \text{ to } 17.2} = 4.13 \text{ to } 4.15 \approx 4.17$	B1		Comparison using two values or one value + diff (0.02 to 0.04 AWFW)
	<u>17.1 to 17.2 ≈/= 17.3 to 17.4</u>			Comparison using two values or one value + diff (0.1 to 0.3 AWFW)
	so reject claim that not random samples			Dependent on previous B1
	or accept that are random samples	Bdep1	3	Correct conclusion regarding randomness of sample
	Total		14	

MS/SS1B	SS1B (cont)						
Q	Solution	Marks	Total	Comments			
7 (a)	$\overline{x} = \frac{181.8}{36} = $ <u>5.05 or 5050</u>	B1		CAO			
	98% (0.98) $\Rightarrow z = 2.32 \text{ to } 2.33$	B1		AWFW (2.3263)			
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used with z (2.05 to 2.58), \overline{x} (5.05, 5050 or 181.8), σ (0.0075, 0.075, 0.75, 7.5 or 75) and $\div \sqrt{n}$ with $n > 1$			
	Thus $5.05 \pm 2.3263 \times \frac{0.075}{\sqrt{36}}$	A1		$z (2.05 \text{ to } 2.06 \text{ or } 2.32 \text{ to } 2.33 \\ \text{or } 2.57 \text{ to } 2.58), \\ \overline{x} (5.05) \& \sigma (0.075) \text{ or} \\ \overline{x} (5050) \& \sigma (75) \\ \text{and } \div \sqrt{36 \text{ or } 35} \end{cases}$			
	Hence 5.05 ± 0.03 or 5050 ± 30 OR (5.02, 5.08) or (5020, 5080)	Adep1	5	CAO/AWRT Dependent on previous A1 so can be scored with $z \neq 2.32$ to 2.33 Ignore (absence of) quoted units AWRT to 3sf accuracy			
Note	Use of $t(2.43 \text{ to } 2.72) \implies B1 B0 M1 A0 A0 \text{ max}$						
(b)	Clear correct comparison of 5 or 5000 with LCL or CI so agree with (first) claim (about mean)	Adep1		Dependent on Adep1 in (a) Must use consistent units			
	(8/36 or 0.22 or 22%) v (1/10 or 0.10 or 10%) or 8 v 3.6 (3 to 4)	B1		Mention of a value on LHS and a value on RHS			
	so 8/36 OE >/≠ 1/10 OE so disagree with (second) claim (about individuals)	Bdep1	3	Dependent on B1 Explicit comparison of values and correct conclusion			
Notes	 It/(claimed) mean/(claimed) value < LCL/CI ⇒ Adep0 98% have (mean) weights between CLs so ⇒ Adep0 Any reference to CI for second claim ⇒ B0 Bdep0 C 	Must indicate 5 or 5000 0 laim refers to individual bottles					
(c)	Yes because volumes/bleach/litres/bottles/ (parent) population are not (stated as) normally distributed	B1	1	OE; but do not accept 'data' or 'sample' or 'it' Reference to sample size only \Rightarrow B0 (eg $n > 25$ or $n > 30$)			
	Total		9				
	TOTAL		75				